Worker Pool in Go

Worker Pool in Go

ReGY 890 2022-08-14

最近在實作數據中台的 service, 由於 service 設計上需要滿足 parallelization 及 high-concurrency 的需求, 軟體架構設計上希望透過 Worker Pool 來完成, 也藉此機會精進 go concurrency control

偶然間讀到一篇著於 2015 年的文章 Handling 1 Million Requests per Minute with Go
, 深受文章內容啟發, 推薦大家有機會可以讀一下原文

本文主要紀錄說明文章精華, 並將程式碼封裝為通用 package component, 簡化所有 service 的 Worker Pool 調用流程

The Problem

初始的需求其實並不複雜, 目標是實現能處理來自百萬 endpoint 發起的大量 POST 請求的 handler, handler 主要功能為將收到的 payloads 上傳至 Amazon S3 bucket

From Beginning

開始先定義 HTTP request payload 及上傳至 S3 method:

type PayloadCollection struct {
	WindowsVersion  string    `json:"version"`
	Token           string    `json:"token"`
	Payloads        []Payload `json:"data"`
}

type Payload struct {
    // [redacted]
}

func (p *Payload) UploadToS3() error {
    // the storageFolder method ensures that there are no name collision in
    // case we get same timestamp in the key name
    storage_path := fmt.Sprintf("%v/%v", p.storageFolder, time.Now().UnixNano())

	bucket := S3Bucket

	b := new(bytes.Buffer)
	encodeErr := json.NewEncoder(b).Encode(payload)
	if encodeErr != nil {
		return encodeErr
	}

    // Everything we post to the S3 bucket should be marked 'private'
    var acl = s3.Private
	var contentType = "application/octet-stream"

	return bucket.PutReader(storage_path, b, int64(b.Len()), contentType, acl, s3.Options{})
}

每個 payload 啟用一個 goroutine 處理, 達到平行處理請求目的:

func payloadHandler(w http.ResponseWriter, r *http.Request) {

    if r.Method != "POST" {
		w.WriteHeader(http.StatusMethodNotAllowed)
		return
	}

    // Read the body into a string for json decoding
	var content = &PayloadCollection{}
	err := json.NewDecoder(io.LimitReader(r.Body, MaxLength)).Decode(&content)
    if err != nil {
		w.Header().Set("Content-Type", "application/json; charset=UTF-8")
		w.WriteHeader(http.StatusBadRequest)
		return
	}

    // Go through each payload and queue items individually to be posted to S3
    for _, payload := range content.Payloads {
        go payload.UploadToS3()   // <----- DON'T DO THIS
    }

    w.WriteHeader(http.StatusOK)
}

這種方式簡單易懂, 在一般使用場景下也不會有什麼問題, 但是在 high-concurrency 場景下, 如果不對 goroutineconcurrency control 可能會面臨 CPU, Memory 竄升直至系統崩潰, 若處理過程涉及 disk 讀寫, 則 system loading 更會呈指數級成長

若要面對每分鐘 100 萬的 POST requests, 這種實現方式系統可能很快就被打掛了

Round Two

buffered channel 當作 job queue, 如此便可以透過控制 queue item 的數量達到系統資源控管, 不會因突然拉升的 request 導致系統癱瘓:

var Queue chan Payload

func init() {
    Queue = make(chan Payload, MAX_QUEUE)
}

func payloadHandler(w http.ResponseWriter, r *http.Request) {
    ...
    // Go through each payload and queue items individually to be posted to S3
    for _, payload := range content.Payloads {
        Queue <- payload
    }
    ...
}

而後再單獨啟 processor 去 consume job queue 並處理上傳任務:

func StartProcessor() {
    for {
        select {
        case job := <-Queue:
            job.payload.UploadToS3()  // <-- STILL NOT GOOD
        }
    }
}

如此一來雖然解決了 goroutine 失控的問題, 但依然沒有解決如何在 high-concurrency 環境下平行處理大量請求, 這種方式還是 single-thread 處理請求, 效能反而更糟

Final War

採用兩層 channel 設計, 一個 channel 作爲 job queue 儲存待處理的 job, 另一個 channel 則用來作 worker control

空閒的 Worker 會註冊到 wokerPool 中等待分配 Job, Dispatcher 會將 Job 分配到空閒 WorkerjobChannel 中, WorkerjobChannel 中接收 Job 並處理, 處理結束後再次註冊至 wokerPool 等待下一次 dispatch, 循環往復:

var (
	MaxWorker = os.Getenv("MAX_WORKERS")
	MaxQueue  = os.Getenv("MAX_QUEUE")
)

// Job represents the job to be run
type Job struct {
	Payload Payload
}

// A buffered channel that we can send work requests on.
var JobQueue chan Job

// Worker represents the worker that executes the job
type Worker struct {
	WorkerPool  chan chan Job
	JobChannel  chan Job
	quit    	chan bool
}

func NewWorker(workerPool chan chan Job) Worker {
	return Worker{
		WorkerPool: workerPool,
		JobChannel: make(chan Job),
		quit:       make(chan bool)}
}

// Start method starts the run loop for the worker, listening for a quit channel in
// case we need to stop it
func (w Worker) Start() {
	go func() {
		for {
			// register the current worker into the worker queue.
			w.WorkerPool <- w.JobChannel

			select {
			case job := <-w.JobChannel:
				// we have received a work request.
				if err := job.Payload.UploadToS3(); err != nil {
					log.Errorf("Error uploading to S3: %s", err.Error())
				}

			case <-w.quit:
				// we have received a signal to stop
				return
			}
		}
	}()
}

// Stop signals the worker to stop listening for work requests.
func (w Worker) Stop() {
	go func() {
		w.quit <- true
	}()
}

type Dispatcher struct {
	// A pool of workers channels that are registered with the dispatcher
	WorkerPool chan chan Job
}

func NewDispatcher(maxWorkers int) *Dispatcher {
	pool := make(chan chan Job, maxWorkers)
	return &Dispatcher{WorkerPool: pool}
}

func (d *Dispatcher) Run() {
    // starting n number of workers
	for i := 0; i < d.maxWorkers; i++ {
		worker := NewWorker(d.pool)
		worker.Start()
	}

	go d.dispatch()
}

func (d *Dispatcher) dispatch() {
	for {
		select {
		case job := <-JobQueue:
			// a job request has been received
			go func(job Job) {
				// try to obtain a worker job channel that is available.
				// this will block until a worker is idle
				jobChannel := <-d.WorkerPool

				// dispatch the job to the worker job channel
				jobChannel <- job
			}(job)
		}
	}
}

當 handler 接收到 HTTP POST request 就會將 Job push 到 JobQueue, 隨後 Dispatcher 會將 Job 取出並 dispatch 給 idle worker 處理, 達到並行處理的目的

func payloadHandler(w http.ResponseWriter, r *http.Request) {

    if r.Method != "POST" {
		w.WriteHeader(http.StatusMethodNotAllowed)
		return
	}

    // Read the body into a string for json decoding
	var content = &PayloadCollection{}
	err := json.NewDecoder(io.LimitReader(r.Body, MaxLength)).Decode(&content)
    if err != nil {
		w.Header().Set("Content-Type", "application/json; charset=UTF-8")
		w.WriteHeader(http.StatusBadRequest)
		return
	}

    // Go through each payload and queue items individually to be posted to S3
    for _, payload := range content.Payloads {

        // let's create a job with the payload
        work := Job{Payload: payload}

        // Push the work onto the queue.
        JobQueue <- work
    }

    w.WriteHeader(http.StatusOK)
}

func main() {
  // create dispatcher and initialize worker, listen and dispactch job from JobQueue
  d := NewDispatcher(MaxWorker)
  d.Run()
  http.HandleFunc("/payload", payloadHandler)
  log.Fatal(http.ListenAndServe(":8099", nil))
}

另外 JobQueueWorkerPool 皆為 buffered channel, buffer 長度可由外部參數或環境變數決定, 增加了系統彈性:

var (
	MaxWorker = os.Getenv("MAX_WORKERS")
	MaxQueue  = os.Getenv("MAX_QUEUE")
)

到目前為止, 已經完成最開始問題所設定的目標, 即在 concurrency control 的前提下完成 parallelization, 最大化執行效能且最小化 memory overhead

但如果日後想在其他場景也能使用 worker pool, 還需要將程式碼進行封裝及抽象, 以讓任何類型的業務邏輯都能輕鬆調用 worker pool

Follow Up

首先將 Job struct 抽象為 Job interface, 並定義一個抽象方法 Execute()

外部調用時可以自定義 job struct 並 implement Execute(), 即可輕鬆調用 work pool package

另外也將 maxWorkersmaxJobs 最為參數封裝到 NewDispatcher(), 在調用時可以直接指定 worker pooljob queue 的大小, 進一步簡化 configuration 的過程:

type Job interface {
	Execute()
}

type Worker struct {
	workerPool chan chan Job
	jobChannel chan Job
	done       chan bool
}

func NewWorker(workerPool chan chan Job) *Worker {
	return &Worker{
		workerPool: workerPool,
		jobChannel: make(chan Job),
		done:       make(chan bool),
	}
}

// Start method starts the run loop for the worker, listening for a done channel in
// case we need to stop it
func (w *Worker) Start() {
	go func() {
		for {
			// register the current worker into the worker pool.
			w.workerPool <- w.jobChannel

			select {
			case job := <-w.jobChannel:
				// we have received a work request.
				job.Execute()

			case <-w.done:
				// we have received a signal to stop
				return
			}
		}
	}()
}

func (w *Worker) Stop() {
	go func() {
		w.done <- true
	}()
}

type Dispatcher struct {
	// A pool of jobs channel that are waiting to be executed
	JobQueue chan Job
	// A pool of workers channels that are registered with the dispatcher
	workerPool chan chan Job
	maxWorkers int
	maxJobs    int
}

func NewDispatcher(maxWorkers int, maxJobs int) *Dispatcher {
	jobQueue := make(chan Job, maxJobs)
	workerPool := make(chan chan Job, maxWorkers)

	return &Dispatcher{
		JobQueue:   jobQueue,
		workerPool: workerPool,
		maxJobs:    maxJobs,
		maxWorkers: maxWorkers,
	}
}

func (d *Dispatcher) Run() {
	// starting n number of workers
	for i := 0; i < d.maxWorkers; i++ {
		worker := NewWorker(d.workerPool)
		worker.Start()
	}

	go d.dispatch()
}

func (d *Dispatcher) dispatch() {
	for {
		select {
		case job := <-d.JobQueue:
			// a job request has been received
			go func(job Job) {
				// try to obtain a worker job channel that is available.
				// this will block until a worker is idle
				jobChannel := <-d.workerPool

				// dispatch the job to the worker job channel
				jobChannel <- job
			}(job)
		}
	}
}

以下為一個簡單的 test case, 任務為將 byte[] 反覆 encoding/decoding 100 次:

type mockJob struct {
	payload []byte
}

func (m *mockJob) Execute() {
	b := m.payload
	for i := 0; i < 100; i++ {
		var mt map[string]interface{}

		_ = json.Unmarshal(b, &mt)
		b, _ = json.Marshal(mt)
	}
}

func Test_WorkerPool(t *testing.T) {
	var request = 1000

	d := NewDispatcher(100, 100)
	d.Run()

	for i := 0; i < request; i++ {
		j := &mockJob{
			payload: []byte(`
				"person": {
					"name": {
					  "first": "Leonid",
					  "last": "Bugaev",
					  "fullName": "Leonid Bugaev"
					},
					"github": {
					  "handle": "buger",
					  "followers": 109
					},
					"avatars": [
					  { "url": "https://avatars1.githubusercontent.com/u/14009?v=3&s=460", "type": "thumbnail" }
					]
				  },
				  "company": {
					"name": "Acme"
				  }
			`),
		}
		d.JobQueue <- j
		t.Log("Operation successful")
	}
}

func Benchmark_Worker_Pool(b *testing.B) {
	d := NewDispatcher(100, 100)
	d.Run()

	for i := 0; i < b.N; i++ {
		j := &mockJob{
			payload: []byte(`
				"person": {
					"name": {
					  "first": "Regy",
					  "last": "Chang",
					  "fullName": "Handsome Guy"
					},
					"github": {
					  "handle": "regy",
					  "followers": 3
					},
					"avatars": [
					  { "url": "https://avatars1.githubusercontent.com/u/14009?v=3&s=460", "type": "thumbnail" }
					]
				  },
				  "company": {
					"name": "NexAIoT"
				  }
			`),
		}
		d.JobQueue <- j
	}
}

Summary

整個 Worker Pool work flow 如下圖:

worker_pool_work_flow

最後總結一下這個 worker pool 實現了以下功能:

  • Execute concurrent job by goroutine
  • Flexibility with the definition of job running
  • Limiting the number of jobs executed over a period of time

完整程式碼: https://github.com/ReGYChang/zero/blob/main/pkg/utils/worker_pool.go


# Go # Concurrency # Goroutine